Abstract

A new thermodynamic uncertainty relation (TUR) is derived for systems described by linearly coupled Langevin equations in the presence of non-linear frictional forces. In our scheme, the main variable represents the velocity of a particle, while the other coupled variables describe memory effects which may arise from strongly correlated degrees of freedom with several time-scales and, in general, are associated with thermal baths at different temperatures. The new TUR gives a lower bound for the mean-squared displacement of the position of the particle, including its asymptotic diffusion coefficient. This bound, in several examples worked out here, appears to be a good analytical estimate of the real diffusion coefficient. The new TUR can be also applied in the absence of any external force (with or without thermal equilibrium between the baths), a case which usually goes beyond the scope of original TURs. We show applications to non-linear frictional models with memory, such as the Coulomb and the Prandtl-Tomlinson models, usually representative of friction at the nano-scale and within atomic-force microscopy experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.