Abstract

The temperature dependences of the heat capacityC 0 p of fullerites C60 were studied at temperatures ranging from 5 to 320 K in an adiabatic vacuum calorimeter with an accuracy of 0.4–0.2%. The fullerite C60 samples were prepared by treating the starting fullerite C60 under 8 GPa at 920 and 1270 K and “quenched” by a sharp decrease in pressure to −105 Pa and in temperature to ∼300 K. Fullerite C60(8 GPa, 920 K), a crystalline polymer with layered structure formed by polymerized fullerene C60 molecules, was obtained at 920 K and 8 GPa. Fullerite C60(8 GPa, 1270 K), a three-dimensional polymer with a graphite-like structure formed by fragments of decomposed C60 molecules and containing many C(sp3)−C(sp3) bonds, was obtained at 1270 K and 8 GPa. Both polymers are metastable polymeric phases. The anomalous character of the temperature dependence of the heat capacity was revealed in the 49–66 K range for the polymer formed at 1270 K. The thermodynamic functions of the substances under study were calculated for the 0–320 K region along with entropies of their formation from graphite. The entropies of transformation of the starting fullerite C60 into metastable phases and that of intertransformation of phases were estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call