Abstract

Models commonly used to calculate the thermodynamic properties of refrigerants are summarized. For pure refrigerants, the virial, cubic, Martin-Hou, Benedict-Webb-Rubin, and Helmholtz energy equations of state and the extended corresponding states model are discussed. High-accuracy formulations for 16 refrigerants are recommended. These models may be extended to mixtures through the use of mixing rules applied either to the parameters of the equation of state or to some property of the mixture components. Mixtures of a specific composition may also be modeled as a pseudo-pure fluid. Five mixture models, employing four distinct approaches, have been compared by a group working under the auspices of the International Energy Agency. These comparisons show all five models to be very capable in representing mixture properties. No single model was best in all aspects, but based on its combination of excellent accuracy and great generality, we recommend the mixture Helmholtz energy model as the best available. Experimental data are essential to both fit the adjustable parameters in property models and to assess their accuracy. We present a survey of the data available for mixtures of the HFC refrigerants R32, R125, R143a, R134a, and R152a and for mixtures of the natural refrigerants propane, butane, isobutane, and carbon dioxide. More than 60 data references are identified. Further data needs include caloric data for additional mixtures, comprehensive pressure-density-temperature data for additional mixture compositions, and improved accuracy for vapor-liquid equilibria data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call