Abstract

In the current study, the effect of tetra-n-butyl ammonium bromide (TBAB) and cyclohexane mixture on CH4 semi-clathrate hydrate formation was studied. Semi-clathrate dissociation conditions for CH4 + TBAB + cyclohexane + water were investigated at different concentrations of TBAB (0.05, 0.10, and 0.15) mass fraction in the presence of cyclohexane at the pressure and temperature ranges of 1–8 MPa and 275.1–295 K, respectively. In addition, a thermodynamic model was suggested to predict the phase equilibria of our system, which is divided into four phases, where the van der Waals–Platteeuw Solid Solution Theory has been used to predict the hydrate phase. For gas phase, The SRK equation of state was applied. For oil phase, the cyclohexane activity coefficient in the organic phase was calculated by the non-random two-liquid model (NRTL). Finally, to determine the activity coefficient of the electrolyte species in the aqueous phase, the semi-empirical electrolyte NRTL (eNRTL) activity model was used. The results showed that the proposed model has an acceptable agreement with the experimental semi-clathrate hydrate dissociation data with an approximately average absolute relative deviation of 5.4%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.