Abstract

This paper presents the thermodynamic evaluation of A390 hypereutectic Al–Si alloy (Al–17% Si–4.5% Cu–0.5% Mg) and alloys up to 10% Mg, using the Factsage® software. Two critical compositions were detected at 4.2% and 7.2% Mg where the temperatures of the liquidus, the start of the binary and of the ternary eutectic reaction are changed. These critical compositions show differences in the formation of Mg 2Si intermetallic particles during the solidification interval. For compositions up to 4.2% Mg, the Mg 2Si intermetallic phase first appears in the ternary eutectic zone. With Mg contents between 4.2% and 7.2%, Mg 2Si particle appears in both the binary and ternary eutectic reactions. Above 7.2% Mg, it solidifies as a primary phase and also during the binary and ternary reactions. The calculated liquid fraction vs. temperature curves also showed a decrease of the eutectic formation temperature (knee point temperature) with the addition of Mg content up to 4.2% Mg. This temperature becomes almost constant up to 10% Mg. The calculation of eutectic formation temperature shows a good agreement with differential scanning calorimetry (DSC) tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.