Abstract

The chemical reactions in the SiCl4-Si-H2 system using a low temperature hydrogenation technique related to the Siemens process were studied based on thermodynamics. The diagrams of standard Gibbs free energy of formation and equilibrium constants for seven reactions used as a function of temperature in this system were calculated and plotted for a temperature range of 473 K to 1073 K. It showed that the lower the temperature, the larger the conversion ratio of SiCl4. The equilibrium composition of gaseous species in the SiCl4-Si-H2 system with different initial SiCl4/H2 ratio and systematic pressure was calculated and the corresponding conversion ratio of SiCl4 was obtained. The conversion ratio was improved by increasing the initial ratio of H2 in raw materials and the systematic pressure but was reduced with the increase of temperature. The conversion ratio of SiCl4 reached 0.41 with an initial SiCl4/H2 ratio of 1/5 and a systematic pressure of 5 MPa at 473 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.