Abstract

This paper proposes a new approach on the processing of silicon production waste (microsilica) as a raw material for metallurgical processing. It is known from practice that the granulometric composition of microsilica does not allow its use in metallurgical processing. The authors of this work propose its use together with a reductant as part of a briquetted charge. In this work, the optimal composition of the charge mixture for briquetting is determined. The main focus is on assessing the strength characteristics of the briquettes and analyzing their efficiency in the silicon smelting process. The strength of the briquettes was studied by the dropping method. As a result, in terms of strength and other characteristics, it is highly advisable to use briquettes consisting of 65% of microsilica and 35% special coke screenings. The obtained batches of high-strength briquettes were tested for the smelting of metallurgical grade silicon in a large-scale laboratory ore-thermal furnace to replace the traditional charge mixtures (high-quality quartzites, petroleum coke, wood chips, etc.) with briquettes. It was established that the briquetted monocharge ensures more intensive reduction processes and improves melting conditions compared to the traditional charge. This leads to higher silicon recovery rates, which was confirmed by tests, during which the maximum recovery rate reached 83.1% with a 30% replacement of the charge with briquettes. The batch of metallurgical silicon with 95-96% of Si content was obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.