Abstract
In this paper, the thermodynamic effect is systematically studied by Venturi cavitation in a blow-down type tunnel for the first time, using water at temperatures up to relatively high levels and at controlled dissolved gas contents in the supply reservoir (measured by dissolved oxygen, DO). The mean attached cavity length Lcav is chosen to reveal the thermodynamic effect, and the cavitation characteristics are analyzed from the experiments. With an increase in the thermodynamic parameter Σ*, a decrease in Lcav vs the pressure recovery number κ is observed, which is consistent with suppression of cavitation by the thermodynamic effect, but the decrease is related not only to this effect. Based on the experimental results, a model is presented of the attached cavity cloud that develops from the Venturi throat. It is found that either the length of this cloud oscillates stably around a mean value or the cloud breaks regularly at some upstream position, allowing that a detached cavity cloud is shed, flows downstream, and collapses while the remaining attached cloud regenerates. Applying this model to experimental results obtained first with cold water, then with hot water, we find that when the mean length of the attached cavity cloud oscillates stably, temperature increase causes reduction of the mean cavitation length. This is interpreted to be a consequence of the thermodynamic effect. When detachment of large cavity clouds occurs, the mean length is increased at temperature increase. This is a consequence of cloud configuration changes being superposed on changes due to the thermodynamic effect. These observations explain conflicting results reported for attached cavity clouds in relation to the thermodynamic effect. The gas content in the water is found to be without significance within the range of DO tested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.