Abstract

ABSTRACT: Molecular mimicry and molecular symbiosis are proposed to be the main factors controlling thermodynamic activity and phase behavior of macromolecular compounds in foods, beverages, and chyme. Molecular mimicry implies a chemical resemblance of hydrophilic surfaces of globular proteins with their chemical information hidden in the hydrophobic interior and low excluded volume of the globules. The molecular mimicry contributes to the efficiency of enzymes. Molecular symbiosis means that interactions attraction or repulsion) between biopolymer molecules greatly differing in conformation (globular and rod-like) favor the biological efficiency of one of them at least. The symbiosis is based on excluded volume effects of macromolecules in mixed solutions. Association-dissociation of rod-like macromolecules can dictate thermodynamic activity of an enzyme in the mixed solution. Thermodynamic incompatibility is typical of food macromolecules, whose denaturation, association, complexing, and chemical modification reduce their mimicry and co-solubility. Foods are normally phase-separated systems with highly volume-occupied phases. The phase-separated nature of the gel-like chyme is important to the efficiency of digestion of mixed diets. Phase separation of biopolymer mixtures, presumably, underlies mechanisms of nonspecific immune defense. The phase behavior-functionality relationships is presented through concrete examples of some foods (such as milk products, low-fat spreads, ice cream, wheat and rye doughs, thermoplastic extrudates, etc.), beverages (tea and coffee), and chyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.