Abstract

Abstract Abstract This paper focuses on non linear control of non isothermal Continuous Stirred Tank Reactors (CSTRs). The model of the CSTR is thermodynamically consistent in order to apply the control strategy based on the concavity of the entropy function and the use of thermodynamic availability as Lyapunov function. More precisely the stabilization problem of continuous chemical reactors is addressed operated at an unstable open loop equilibrium point. The chosen control variable is the jacket temperature. In this paper we propose a state feedback strategy to insure asymptotic stability with physically admissible control variable solicitations. Theoretical developments are illustrated on a first order chemical reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.