Abstract

The main goal of this paper is to introduce a link between the thermodynamics and control systems theory. More precisely, the paper focuses on Lyapunov based control of process systems, specially the non isothermal Continuous Stirred Tank Reactors in a thermodynamic framework, using either the jacket temperature or the inlet molar flow rate as the only control input. As soon as the constraint on the total mass is considered and the reaction kinetics is a Lipschitz continuous function with respect to the temperature, it shows that the stabilization of thermal solicitations reciprocally entails the one of matter using La Salle’s invariance principle. As a consequence, these control problems can be solved if the closed loop Lyapunov functions are chosen to be proportional to the thermal part or material part of the so called thermodynamic availability function. Some numerical simulations for a first order chemical reaction with multiple steady states are given to validate our theoretical developments. The performance of the obtained nonlinear controllers with regard to the conversion rate is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.