Abstract
This paper presents thermodynamic methodology for the performance evaluation of steam injected gas turbine(STIG) cycle. The effects of pressure ratio, turbine inlet temperature and specific mass flow rate of steam per kg of air used in the thermodynamic analysis of steam injected gas turbine(STIG) cycle on thermal efficiency of the cycle, specific work output and specific fuel consumption have been investigated. From the results obtained in graphs it is observed that thermal efficiency of steam injected gas turbine(STIG) cycle increases and net work output increases and specific fuel consumption decreases as pressure ratio increases; thermal efficiency of steam injected gas turbine(STIG) cycle and specific work output increases with increase in turbine inlet temperature. Results also show that STIG cycle efficiency is always greater than simple gas turbine cycle for same pressure ratio and turbine inlet temperature and for wide range of parameters STIG cycle is superior to simple gas turbine cycle. In STIG cycle as specific mass flow rate per kg of air increases cycle efficiency and net work output also increases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have