Abstract

Low temperature cofired ceramic (LTCC) has been established as an excellent packaging technology for high-reliability, high-density microelectronics. The functionality and robustness of rework have been increased through the incorporation of a physical vapor deposition (PVD) thin film Ti/Cu/Pt/Au metallization. PVD metallization is suitable for radio frequency (RF) applications as well as digital systems. Adhesion of the Ti “adhesion layer” to the LTCC as-fired surface is not well understood. Although previous work has established extrinsic parameters for delamination mechanisms of thin films on LTCC substrates, there is incomplete information regarding the intrinsic (i.e., thermodynamic) parameters in the literature. This article analyzes the thermodynamic favorability of adhesion between Ti, Cr, and their oxide coatings on LTCC (assumed as amorphous silica glass and Al2O3). Computational molecular calculations are used to determine interface energy as an indication of molecular stability between pair of materials at specific temperature. The end result will expand the understanding of thin film adhesion to LTCC surfaces and assist in increasing the long-term reliability of the interface bonding on RF microelectronic layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.