Abstract

Subsolidus ternary phase relationships in the systems FeAlO and CuAlO are reviewed in order to provide a basis for thermodynamic analysis of aluminate formation at Fe/α-Al2O3 and Cu/α-Al2O3 interfaces. Expressions for the critical oxygen activity in the Fe-rich and Cu-rich solid solutions necessary to stabilize the equilibrium aluminate phases (FeAl2O4 and CuAlO2, respectively) in the presence of α-Al2O3 are derived using data available in the literature. As in previous work in the NiαAl2O3 system, aluminate formation by solid state reaction of Fe and Cu with α-Al2O3 was calculated to require a threshold concentration of oxygen in the metal, which is of the order of 1/5 the solubility limit. The sults are presented in stability diagrams and compared with previous results on the Ni/α-Al2O3 system in terms of the free energies of formation of the aluminates and the relative free energes of solution of oxygen in the metals. The results are also compared with available experimental observations on Fe/α-Al2O3 and Cu/α-Al2O3 interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.