Abstract
This paper investigates three ways of coupling a solid/gas sorption refrigeration cycle with a Rankine cycle to create innovative hybrid cycles enabling power and refrigeration cogeneration with intrinsic energy storage. A new methodology has been developed to analyze these hybrid cycles and assess five relevant performance criteria (required heat source temperature, energy efficiency, exergy efficiency, power production ratio, and exergy storage density). Screening of 103 reactive salts implemented in the different hybrid cycle configurations highlights the most favorable configuration and reagent to meet the requirements of various applications. Analyses show that energy and exergy efficiencies can reach 0.61 and 0.40, respectively. Exergy storage density ranges from 142 to 640 kJ/kgNH3 when the heat source temperature is increased from 107 °C to 250 °C.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have