Abstract

Desalination could solve the grand challenge of water scarcity, but materials-based and conventional thermal desalination methods generally suffer from scaling, fouling and materials degradation. Here, we propose and assess thermodiffusive desalination (TDD), a method that operates entirely in the liquid phase and notably excludes evaporation, freezing, membranes, or ion-adsorbing materials. Thermodiffusion is the migration of species under a temperature gradient and can be driven by thermal energy ubiquitous in the environment. Experimentally, a 450 ppm concentration drop was achieved by thermodiffusive separation when passing a NaCl/H2O solution through a single channel. This was further increased through re-circulation as a proof of concept for TDD. We also demonstrate via molecular dynamics and experiments that TDD in multi-component seawater is more amenable than in binary NaCl/H2O solutions. Numerically, we show that a scalable cascaded channel structure can further amplify thermodiffusive separation, achieving a concentration drop of 25000 ppm with a recovery rate of 10%. The minimum electric power consumption in this setup can be as low as 3 Whe m−3, which is only 1% of the theoretical minimum energy for desalination. TDD has potential in areas with abundant thermal energy but limited electrical power resources and can contribute to alleviating global freshwater scarcity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.