Abstract

Two structurally related and photoresponsive cyanide-bridged Fe/Co square complexes, {Fe2Co2}, are reported: {[(Tp(Me))Fe(CN)3]2[Co(bpy)2]2[(Tp(Me))Fe(CN)3]2}·12H2O (2) and {[(Tp(Me))Fe(CN)3]2[Co(bpy)2]2[BPh4]2}·6MeCN (3), where Tp(Me) and bpy are hydridotris(3-methylpyrazol-1-yl)borate and 2,2'-bipyridine, respectively. Through electrochemical and spectroscopic studies, the Tp(Me) ligand appears to be a moderate σ donor in comparison to others in the [NEt4][(Tp(R))Fe(III)(CN)3] series [where Tp(R) = Tp, hydridotris(pyrazol-1-yl)borate; Tp(Me) = hydridotris(3-methylpyrazol-1-yl)borate; pzTp = tetrakis(pyrazol-1-yl)borate; Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate; Tp*(Me) = hydridotris(3,4,5-trimethylpyrazol-1-yl)borate]. The spectroscopic, structural, and magnetic data of the {Fe2Co2} squares indicate that thermally-induced intramolecular electron transfer reversibly converts {Fe(II)LS(μ-CN)Co(III)LS} pairs into {Fe(III)LS(μ-CN)Co(II)HS} units near ca. 230 and 244 K (T1/2) for 2 and 3, respectively (LS: low spin; HS: high spin). These experimental results show that 2 and 3 display light-induced {Fe(III)LS(μ-CN)Co(II)HS} metastable states that relax to thermodynamic {Fe(II)LS(μ-CN)Co(III)LS} ones at ca. 90 K. Ancillary Tp(R) ligand donor strength appears to be the dominant factor for tuning electron transfer properties in these {Fe2Co2} complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call