Abstract

This paper reports an experimental and computational thermochemical study on two barbituric acid derivatives, viz. 1,3-diethylbarbituric acid and 1,3-diethyl-2-thiobarbituric acid. Values of standard molar enthalpies of formation in the gas phase at T=298.15K have been derived from experiment. Energies of combustion were measured by the static bomb combustion calorimetry in the case of 1,3-diethylbarbituric acid, and the rotating-bomb combustion calorimetry in the case of 1,3-diethyl-2-thiobarbituric acid. From the combustion energies, standard molar enthalpies of formation in the crystalline state at T=298.15K were calculated. The enthalpy of vaporization of 1,3-diethylbarbituric acid and enthalpy of sublimation of 1,3-diethyl-2-thiobarbituric acid were determined using the transpiration method. Combining calorimetric and transpiration results, values of −(611.9±2.0)kJ·mol−1 and −(343.8±2.2)kJ·mol−1 for the gas-phase enthalpies of formation at T=298.15K of 1,3-diethylbarbituric and 1,3-diethyl-2-thiobarbituric acids, respectively, were derived. Theoretical calculations at the G3 and G4 levels were performed, and a study of the molecular structure of the compounds has been carried out. Calculated enthalpies of formation were in very good agreement with the experimental values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call