Abstract

This paper reports an experimental and computational thermochemical study on 1,3-dimethylbarbituric acid. The value of the standard (p° = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -639.6 ± 1.9 kJ·mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated N(2) stream and a value of the enthalpy of sublimation at T = 298.15 K was derived as 92.3 ± 0.6 kJ·mol(-1). From these results a value of -547.3 ± 2.0 kJ·mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 and G4 levels were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in very good agreement with the experimental value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.