Abstract

In this work, the conditions required to transform quantum-confined cadmium sulfide (Q-CdS) nanoparticles stabilized by calf thymus deoxyribonucleic acid from deep trap photoluminescent states to “band edge”-type luminescence are probed. The presence of fivefold excess sulfide relative to cadmium concentration during cluster synthesis, followed by mild heating at 80°C, results in the desired transformation of the Q-CdS emission spectrum. We also indirectly analyze the accompanying structural changes in the polymeric stabilizer, accomplished in this case by use of well-known spectrofluorometric methods with the dyes ethidium bromide and trisphenanthroline ruthenium(II).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.