Abstract

ABSTRACTThe Colombian sugarcane industry yields significant residues, categorized as agricultural and industrial. While bagasse, a widely studied industrial residue, is employed for energy recovery through combustion, agricultural residues are often left in fields. This study assesses the combustion behavior of these residues in typical collection scenarios. Additionally, it encompasses the characterization of residues from genetically modified sugarcane varieties in Colombia, potentially exhibiting distinct properties not previously documented. Non-isothermal thermogravimetrical analysis was employed to study the thermal behavior of sugarcane industrial residues (bagasse and pith) alongside agricultural residues from two different sugarcane varieties. This facilitated the determination of combustion reactivity through characteristic combustion process temperatures and technical parameters like ignition and combustion indexes. Proximate, elemental, and biochemical analyses revealed slight compositional differences. Agricultural residues demonstrated higher ash content (up to 34%) due to foreign matter adhering during harvesting, as well as soil and mud attachment during collection. Lignin content also varied, being lower for bagasse and pith, attributed to the juice extraction and milling processes that remove soluble lignin. Thermogravimetric analysis unveiled a two-stage burning process in all samples: devolatilization and char formation (~170°C), followed by char combustion (~310°C). Characteristic temperatures displayed subtle differences, with agricultural residues exhibiting lower temperatures and decomposition rates, resulting in reduced ignition and combustion indexes. This indicates heightened combustion reactivity in industrial residues, attributed to their elevated oxygen percentage, leading to more reactive functional groups and greater combustion stability compared to agricultural residues. This information is pertinent for optimizing sugarcane residues utilization in energy applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.