Abstract

A numerical investigation of the thermal and acoustic effects in high-speed compressible flows is presented. Two case studies are considered: i) transition to turbulence in supersonic flows over a flat plate, and ii) supersonic shock wave turbulent boundary layer interaction (SWTBLI) over a compression ramp. Implicit Large Eddy Simulations (iLES) are performed using the second and fifth order Monotone-Upstream Central Scheme for Conservation Laws (MUSCL) and the ninth order Weighted Essentially Non-Oscillatory (WENO) schemes. The aim of this study is twofold: i) to examine the acoustic and thermal effects associated with transitional and turbulent boundary layers, particularly in the near wall region; ii) to investigate the effects of numerical accuracy on acoustic and thermal loading. The results are compared with theoretical models, Direct Numerical Simulations (DNS) and experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call