Abstract

An investigation of the accuracy of high-order methods for hypersonic shock wave turbulent boundary layer interaction (SWTBLI) is presented. The numerical methods considered here comprise of the Monotone-Upstream Central Scheme for Conservation Laws (MUSCL) and Weighted Essentially Non-Oscillatory (WENO) schemes, 2 nd to 9 th order accurate in conjunction with structured and mixed element unstructured grids. Both Implicit Large Eddy Simulation (ILES) and Reynolds Averaged Navier-Stokes (RANS) computations have been performed. The effects of discretization on the turbulence transport equation, including the approximation method for the viscous gradient, are also investigated. The accuracy of the schemes in high Reynolds number RANS modeling is assessed against experimental data of a shock impingement on a flat plate at Mach number 5 and unit Reynolds number 37×10 6 /m. ILES has been performed for the compression ramp case at moderate Reynolds numbers of 38.7×10 3 , based on the boundary layer thickness, and compared to Direct Numerical Simulations (DNS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.