Abstract

Simultaneous achievement of prolonged retention in blood circulation and efficient gene transfection activity in target tissues has always been a major challenge hindering in vivo applications of nonviral gene vectors via systemic administration. The engineered strategies for efficient systemic gene delivery are under wide investigation. These approaches include the thermo-responsive formation of a hydrophobic intermediate layer on PEG-shielded polyplex micelles. Herein, we constructed novel rod-shaped ternary polyplex micelles (TPMs) via complexation between the mixed block copolymers of poly(ethylene glycol)-b-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) and poly(N-isopropylacrylamide)-b-PAsp(DET) (PNIPAM-b-PAsp(DET)) and plasmid DNA (pDNA) at room temperature (RT), exhibiting distinct temperature-responsive formation of a hydrophobic intermediate layer between PEG shells and pDNA cores through facile temperature increase from RT to body temperature (~37 °C).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call