Abstract

A critical role of polyethylene glycol (PEG) crowding in the packaging of plasmid DNA (pDNA) into polyplex micelles (PMs) was investigated using a series of PEG-b-poly(l-lysine) (PEG-PLys) block copolymers with varying molecular weights of both PEG and PLys segments. Rod-shaped PMs preferentially formed when the tethered PEG chains covering pDNA in a precondensed state were dense enough to overlap one another (reduced tethering density (RTD) > 1), whereas globular PMs were obtained when they were not overlapped (RTD < 1). These results submitted a scheme that steric repulsive effect of PEG regulated packaging pathways of pDNA either through folding into rod-shape or collapsing into globular depending on whether the PEG chains are overlapped or not. The rod-shaped PMs gave significantly higher gene expression efficacies in a cell-free system compared to the globular PMs, demonstrating the practical relevance of regulating packaging structure of pDNA for developing efficient gene delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.