Abstract

Hydrogen is rising as one of potential fuel types to instead of petroleum and fossil energy in the future because of its high energy density and non-carbon exhaust. There are many processes for hydrogen production, but fermentative hydrogen production (FHP) from lignocellulosic biomass as rich-carbohydrate feedstocks is considered to be the one of the most effective methods. However, the yield of fermentable sugar could be strongly impacted by pretreatment of lignocellulosic materials.Thus, this work studied the effects of thermal-ammonia pretreatment method on bamboo powder at 125 oC, during in 30-90 minutes. The results showed that the maximum recovery of carbohydrate in solid were 554.21 mg/(1g bamboo powder), and the sugar conversion yield and sugar content in final solution were 9.07 % and 8.31 g/L, respectively. 94.2 % of lignin content in bamboo biomass could be removed. The maximum hydrogen accumulation reached 5.7 % of the gaseous mixtures after 48 h of fermentation. This study showed that hydrothermal technique could be an efficient way in order to disrupt the lignin structure of the biomass and increase the accessibility of other treatment agents to cellulose and hemicellulose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call