Abstract
The accuracy and spatial resolution of full-field deformation measurements performed through digital image correlation are greatly affected by the frequency content of the speckle pattern, which can be effectively controlled using particles with well-defined and consistent shape, size and spacing. This paper introduces a novel toner-transfer technique to impress a well-defined and repeatable speckle pattern on plane and curved surfaces of metallic and cement composite specimens. The speckle pattern is numerically designed, printed on paper using a standard laser printer, and transferred onto the measurement surface via a thermo-mechanical process. The tuning procedure to compensate for the difference between designed and toner-transferred actual speckle size is presented. Based on this evidence, the applicability of the technique is discussed with respect to surface material, dimensions and geometry. Proof of concept of the proposed toner-transfer technique is then demonstrated for the case of a quenched and partitioned welded steel plate subjected to uniaxial tensile loading, and for an aluminum plate exposed to temperatures up to 70% of the melting point of aluminum and past the melting point of typical printer toner powder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.