Abstract
The technique of digital image correlation (DIC), which has been widely used for noncontact deformation measurements in both the scientific and engineering fields, is greatly affected by the quality of speckle patterns in terms of its performance. This study was concerned with the optimization of the digital speckle pattern (DSP) for DIC in consideration of both the accuracy and efficiency. The root-mean-square error of the inverse compositional Gauss-Newton algorithm and the average number of iterations were used as quality metrics. Moreover, the influence of subset sizes and the noise level of images, which are the basic parameters in the quality assessment formulations, were also considered. The simulated binary speckle patterns were first compared with the Gaussian speckle patterns and captured DSPs. Both the single-radius and multi-radius DSPs were optimized. Experimental tests and analyses were conducted to obtain the optimized and recommended DSP. The vector diagram of the optimized speckle pattern was also uploaded as reference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.