Abstract

A comprehensive study of the thermo-mechanical response of a thermoplastic polymer, nylon 101 is presented. Quasi-static and dynamic compression uniaxial and multi-axial experiments (stress states) were performed at a wide range of strain rates (10 −5 to 5000 s −1) and temperatures (−60 to 177 °C or −76 to 350 °F). The material is found to be non-linearly dependent on strain rate and temperature. The change in volume after plastic deformation is investigated and is found to be negligibly small. The relaxation and creep responses at room temperature are found to be dependent on strain rate and the stress–strain level at which these phenomena are initiated. Total deformation is decomposed into visco-elastic and visco-plastic components; these components have been determined at different levels of deformation. Results from non-proportional uniaxial to biaxial compression, and torsion experiments, are also reported for three different strain rates at room temperature. It is shown that nylon 101 has a response dependent on the hydrostatic pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call