Abstract

ABSTRACT The high production of paper, followed by a more significant concern with environmental and economic issues, has led to greater relevance to paper recycling and its raw uses as composite filler. Composites of polypropylene with 10, 20, and 30 wt.% of recycled office waste paper were produced by injection molding and characterized by mechanical and thermal properties. All composites presented a slight reduction of 15°C in thermal stability compared to the polymeric matrix. Moreover, as the filler amount increased, the degree of crystallinity was reduced proportionally. The mechanical test showed similar tensile strength values among neat polymer andcomposites but also showed an increase in the composite’s tensile modulus, related to the stiffness of the natural filler. The composite with a higher percentage of waste paper (30 wt.%) maintained equivalent properties as neatpolypropylene and other composites (10 and 20 wt.%). Thus, 30 wt.% composites proved to be an excellent material with less synthetic polymer percentage, keeping thermal and mechanical properties comparable to the neat PP.Furthermore, this composite does not need chemical treatment or additives harmful to the environment. It is suitable for future applications in various plastic products such as packaging and domestic utensils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.