Abstract
A suitable material for wind turbine blades has promoted great interest in carbon-based thermoplastic polyurethane (TPU) composites as they are flexible, lightweight, and mechanically robust. However, these carbon-based fillers deteriorate the thermal and mechanical properties in the long run due to the high agglomeration of the nanoparticles. In addition to that, these fillers also increase the production cost because of the chemical treatment conducted on the fillers. Therefore, a new approach is essential for maintaining the mechanical and thermal properties without using expensive chemical treatment in a low-cost platform. In this work, we present low agglomeration with even distribution of reinforcing fillers in the TPU matrix and robust mechanical and thermal properties by incorporating TiO2 in the carbon-based TPU matrix (TiO2/MWCNT/TPU), without inclusion of costly chemical treatments. TiO2 improves morphology due to the low valency of Ti2+, which may decrease the particle size and thus, reduces agglomeration. Moreover, the enhanced morphology assists in sustaining the rigidity of its molecular structure at high temperatures. The composite also reveals excellent mechanical properties of high tensile stress (4.46 MPa), more extended elongation at break (49%), and high Young's Modulus (9.17 MPa). The thermal analysis using DMA and TGA revealed that the sample TiO2/MWCNT/TPU is a good heat insulator and has a high glass transition temperature compared to the neat TPU indicating its ability to sustain rigidity at high temperatures overall, this composite can perform in elevated weather conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.