Abstract
PurposeThe purpose of this study was to perform thermo-mechanical deformation and stress analysis in a functionally graded (FG) hollow cylinder considering steady-state temperature distribution under the effect of rotation, gravity and constant heat generation.Design/methodology/approachNavier's equation was used to solve the problem, and the obtained results were validated with benchmarks found to be in excellent agreement. The variation of temperature and other material properties such as Young's modulus, density, thermal expansion coefficient and thermal conductivity varied radially as per power-law variation.FindingsThe effect of rotation was found to be vital compared to gravity and heat generation when compared individually and in combination. The results of displacement and stresses were presented for varying grading indices.Practical implicationsFG cylinders have huge industrial applications as it opens the possibility of developing structures with a high strength/weight ratio. The present study will benefit industries in identifying the effective grading index that can be used by industries for fabricating FG structures.Originality/valueThe effect of rotation, body force and heat generation on a cylindrical body has not been studied before. Furthermore, the combined effect of rotation, body force and heat generation has been studied to understand the behaviour of cylinders operating under similar conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.