Abstract

Thermo-mechanical size-dependent buckling analysis of embedded functionally graded (FG) microbeams is performed based on sinusoidal shear deformation beam and modified couple stress theories. It is assumed that material properties vary smoothly and continuously throughout the thickness. Winkler elastic foundation model is used to simulate the interaction between FG microbeam and elastic medium. The governing equations and corresponding boundary conditions are obtained with the aid of minimum total potential energy principle. The buckling characteristics of simply supported embedded FG microbeams in thermal environment are investigated. The obtained results are compared with the results of simple beam theory with no shear deformation effects and classical theory. Influences of thickness-to-material length scale parameter ratio, material property gradient index, slenderness ratio, temperature change and Winkler parameter on critical buckling loads of embedded FG microbeams are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.