Abstract
ABSTRACTOur overall approach is based on developing a photocrosslinkable polymer network with a favorable shape-memory response, using polymer chemistry and crosslinking density to control thermo-mechanical properties. Three polymer networks were created and thermo-mechanically tested, each from tert-Butyl acrylate linear builder co-polymerized with a poly(ethylene glycol) dimethacrylate cross-linker. By systematically altering the molecular weight and the weight fraction of the cross-linker, it was possible to create three polymers that exhibited the same glass transition temperature, but varied by almost an order of magnitude in rubbery modulus. Therefore, the mechanical stiffness could be tailored to suit a given application. Recovery behavior of the polymers was characterized over a range of deformation temperatures. It has been implicitly assumed a linear relationship between Free-Strain (i.e. no actuation force) and Fixed-Stress (i.e. maximum actuation force), however, this has never been confirmed experimentally. The energy per unit volume performed by the shape-memory polymer was quantified, and observed to be a function of strain recovered. The maximum recoverable work was shown to increase with cross-linking density, although the overall efficiency is similar for all materials tested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.