Abstract

The objective of this work is to characterize and understand structure–mechanical property relationships in (meth)acrylate networks. The networks are synthesized from mono-functional (meth)acrylates with systematically varying sidegroup structure and multi-functional crosslinkers with varying mole fraction and functionality. Fundamental trends are established between the network chemical structure, crosslink density, glass transition temperature, rubbery modulus, failure strain, and toughness. The glass transition temperature of the networks ranged from −29 to 112°C, and the rubbery modulus (Er) ranged from 2.8 to 129.5MPa. At low crosslink density (Er<10MPa) network chemistry has a profound effect on network toughness. At high crosslink densities (Er>10MPa), network chemistry has little influence on material toughness. The characteristic ratio of the mono-functional (meth)acrylates' components is unable to predict trends in network toughness as a function of chemical structure, as has been demonstrated in thermoplastics. The cohesive energy density is a better tool for relative prediction of network mechanical properties. Due to superior mechanical properties, networks with phenyl sidegroups are further investigated to understand the effect of phenyl sidegroup structure on toughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.