Abstract
Abstract The aim of this research is to present a comparative analysis between theoretical and experimental thermal fields as well as a microstructural behaviour and residual stresses applying multiple weld beads in the joint of two API 5L X52 pipe sections. The thermal field, microstructural and residual stresses were numerically modelled through the finite element method (FEM) and compared to experimentally. The simulation conditions used in the FEM analysis were similar considerations to the underwater welding conditions. The finite element analysis was carried out, first by a non-linear transient thermal analysis for obtaining the global temperature history generated during the underwater welding process. Subsequently, a microstructural behaviour was determined using the temperatures distribution obtained in the pipe material by calculating the structural transformations of the material during the welding process, and finally a stress analysis was developed using the temperatures obtained from the thermal analysis. It was found that this simulation method can be used efficiently to determinate with accuracy the optimum welding parameters of this kind of weld applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.