Abstract
This article investigates the history of long-term radial and circumferential creep strains and radial displacement for a three-phase nano-composite exposed to an internal pressure and placed uniform temperature and magnetic field. Three-phase nano-composite made of single-walled carbon. The results in this paper were achieved by presuming a non-linear viscoelasticity, based on Shapery's integral model, classical laminate theory, Prandtl-Reuss's relation and Mendelson's approximation method. The distribution of the radial creep strain, circumferential creep strain and radial displacement in two states of with and without magnetic field and three temperature conditions for two lay-ups [0/45/0/45] and [0/90/0/90] described for 10 years. It has been found that the values of creep strain and radial displacement in magnetic field are lower than without a magnetic field, for two lay-ups.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have