Abstract
An experiment on convective flows induced by the dielectrophoretic force was performed under the microgravity condition provided during a sounding rocket flight. The dielectrophoretic force possesses a non-conservative term that can be seen as resulting from an electric gravity. That gravity can be responsible for an electric Rayleigh–Bénard convection between a hot inner cylinder and a cold outer cylinder when an electric field is applied in the radial direction. Four cells with independent temperature and electric field controls allowed the investigation of eight different values of the electric Rayleigh number relatively close to the onset of the thermo-electric instability. A linear stability analysis is performed to predict the stability threshold and the evolution of the growth rate of the instability. The three-dimensional structure of the flow is captured by simultaneous particle image velocimetry and by shadowgraphy. The amplitude of the instability modes and the time evolution of the flow is analysed, and various methods are proposed to extrapolate the experimental critical value of the electric Rayleigh number for the onset of convection. The measured critical electric Rayleigh number is in agreement with the prediction of the linear stability theory. The comparison of the new experimental results with previous ones from parabolic flight campaigns highlights the importance of long-term microgravity for the achievement of thermal convection at low values of the control parameters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have