Abstract

Influence of oil film inertia forces on thermo-elasto-hydrodynamic lubrication performances of a piston skirt is analyzed, based on a proposed Reynolds lubrication equation for the consideration of oil film inertia force effects. Further, a scheme to solve the inertia effects is given. The numerical results show that oil film inertia forces can result in increments in film pressure and temperature, hydrodynamic friction force and load capacity, deformation, and transverse displacements of the piston skirt. Moreover, the influences are obvious for a big reduced Reynolds number. Therefore, oil film inertia force effects on thermo-elasto-hydrodynamic lubrication performances of a piston skirt in a high speed internal combustion engine should be considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call