Abstract

Integrating renewable resources into traditional tri-generation systems helps to reduce fossil fuel use and emissions. A solar thermal and photovoltaic assisted integrated energy system is proposed here using high- performance cooling approaches to provide cooling, heating, and electricity. To find the best system configurations with a focus on the ecological performance, the specific thermo-ecological cost of the energy products considering energy level is optimized employing the cumulative exergy consumption over the whole life-cycle. The results show that the ideal specific costs for cooling, heating and electricity demands are 8.699, 7.129, and 1.970 J/J, respectively. Compared to the method without the energy level consideration, the specific cost of the hybrid system is 0.47 J/J higher due to the lower energy level of water products. Moreover, the specific thermo-ecological cost of natural gas has higher impacts on the performance of hybrid system than the other parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call