Abstract

Free-radical copolymerization in bulk has afforded copolymers of N-vinylcaprolactam and N‑vinylimidazole (40–60 mol %). Thermosensitive behavior of aqueous solutions of the copolymers has been probed over wide pH range by means of dynamic and static light scattering as well as high-sensitivity differential scanning calorimetry. Three regions of thermally induced conformational behavior have been observed with the change in the medium pH from the alkaline to acidic: phase separation region (I), region of the conformational transition into the mesoglobules state (II), and region of stable molecular solution of the poly-electrolyte (III). Significant polyelectrolyte effects have been revealed for the salt-free solutions of the copolymers, reflected in the presence of fast and slow diffusion modes in the relaxation time distributions. Moderate increase in the ionic strength with the addition of the low-molecular salt has led to shielding of the polyelectrolyte effects, yet the pH-dependent regions of the conformational behavior have not been affected much. The existence of different types of the thermally induced conformational behavior depending on pH has been explained by the balance between hydrophobic interactions involving the N-vinylcaprolactam units and electrostatic interactions of the weakly basic N-vinylimidazole units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.