Abstract
The structural, optical and temperature-dependent luminescence properties of Y2Mg2Al2Si2O12:Cr3+ phosphors were investigated for their multifunctional applications. The as-prepared phosphors exhibited an intense far-red emission band around 600-850 nm with a peak at 687 nm, which matches well with the absorption band of plant phytochromes. Importantly, the optimized sample showed excellent thermal stability and its emission intensity at 423 K maintained about 77% of that at 298 K. The potential application of the phosphors in plant-growth LED devices was also demonstrated. Furthermore, owing to the unique thermal quenching behavior of Cr3+, a three-mode luminescent thermometry system was designed based on fluorescent intensity (FL), fluorescent intensity ratio (FIR), and full width at half maximum (FWHM). The maximum temperature relative sensitivity (Sr) of each mode could reach 2.74% K-1, 1.09% K-1, and 1.47% K-1, respectively. These results indicate that the Y2Mg2Al2Si2O12:Cr3+ phosphors have potential applications for plant growth and optical thermometry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have