Abstract

A systematic study of thermally robust HfN metal gate on conventional SiO/sub 2/ and HfO/sub 2/ high-/spl kappa/ dielectrics for advanced CMOS applications is presented. Both HfN-SiO/sub 2/ and HfN-HfO/sub 2/ gate stacks demonstrates robust resistance against high-temperature rapid thermal annealing (RTA) treatments (up to 1000/spl deg/C), in terms of thermal stability of equivalent oxide thickness (EOT), work function, and leakage current. This excellent property is attributed to the superior oxygen diffusion barrier of HfN as well as the chemical stability of HfN-HfO/sub 2/ and HfN-SiO/sub 2/ interfaces. For both gate dielectrics, HfN metal shows an effective mid-gap work function. Furthermore, the EOT of HfN-HfO/sub 2/ gate stack has been successfully scaled down to less than 10 /spl Aring/ with excellent leakage, boron penetration immunity, and long-term reliability even after 1000/spl deg/C annealing, without using surface nitridation prior to HfO/sub 2/ deposition. As a result, the mobility is improved significantly in MOSFETs with HfN-HfO/sub 2/ gate stack. These results suggest that HfN metal electrode is an ideal candidate for ultrathin body fully depleted silicon-on-insulator (SOI) and symmetric double-gate MOS devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.