Abstract

In this letter, we demonstrate for the first time that the Fermi-level pinning caused by the formation of Ta(N)-Si bonds at the TaN/SiO/sub 2/ interface is responsible for the thermal instability of the effective work function of TaN in TaN/SiO/sub 2/ devices after high temperature rapid thermal annealing (RTA). Because of weak charge transfer between Hf and Ta(N) and hence negligible pinning effect at the TaN/HfO/sub 2/ interface, the effective work function of TaN is significantly more thermally stable on HfO/sub 2/ than on SiO/sub 2/ dielectric during RTA. This finding provides a guideline for the work function tuning and the integration of metal gate with high-/spl kappa/ dielectric for advanced CMOS devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call