Abstract

The paper reports an experimental study of single millimetric water drop impacts onto a hot aluminium alloy (AlMg 3) surface. The main aim of this investigation was to evidence the effect of the heat transfer mechanism on the secondary atomisation, but the effect of impact velocity and surface characteristics on the impact outcomes were also studied. Two non-intrusive measurement techniques, namely Phase Doppler Anemometer and image analysis, were used to describe the time evolution of the secondary droplet diameters and to study the effect of surface temperature, surface roughness and impact velocity on the impact outcomes. The morphology of drop impact is described for two different boiling regimes and quantitative results about the arithmetic mean and Sauter mean diameters of the secondary droplets are reported. An attempt to correlate the Sauter mean diameter of secondary drops with the nominal surface temperature is also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.