Abstract
AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors (MIS-HEMTs) were demonstrated to operate at temperatures of up to 600 °C. High-quality multilayer gate dielectrics (Al2O3/SiO2/SiON) were developed to enhance the thermal stability of the MIS-HEMTs at high temperatures. Furthermore, we found that silicon nitride passivation and circular structure can effectively reduce the off-state drain current, which is critical for high-temperature operations. Based on the optimized process, we demonstrated the AlGaN/GaN MIS-HEMTs with record high Ion/Ioff ratios (1011 at room temperature and 105 at 600 °C) and high transconductances (47 mS/mm at room temperature and 8 mS/mm at 600 °C for a channel length of 2.4 μm). The maximum transconductance was enhanced by ∼28% after the operation at 600 °C. Lifetime measurement of the MIS-HEMT showed stable DC characteristics with a nearly unchanged on-state drain current and threshold voltage over the course of 25-h thermal stress at 525 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.