Abstract

Ultrathin thermally enhanced remote plasma nitrided oxides (TE-RPNO) with equivalent oxide thickness down to 1.65 nm are fabricated to investigate their leakage current reduction and boron diffusion barrier performances. A PMOSFET with TE-RPNO, compared to its conventional oxide counter-part, yields almost one order magnitude lower gate leakage current, less flatband voltage changes in high boron implantation dose or activation temperature, and shows broader process windows in the tradeoff between boron penetration and dopant activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.