Abstract

Stochastic resonance (SR) in a single-electron system is expected to allow information to be correctly carried and processed by single electrons in the presence of thermal fluctuations. Here, we comprehensively study thermally driven single-electron SR. The response of the system to a weak voltage signal is formulated by considering the single-electron tunneling rate, instead of the Kramers’ rate generally used in conventional SR models. The model indicates that the response of the system is maximized at finite temperature and that the peak position is determined by the charging energy. This model quantitatively reproduces the results of a single-electron device simulator. Single-electron SR is also demonstrated using a GaAs-based single-electron system that integrates a quantum dot and a high-sensitivity charge detector. The developed model will contribute to our understanding of single-electron SR and will facilitate accurate prediction, design, and control of single-electron systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.