Abstract

Stochastic resonance behavior of single electrons in a quantum dot and its summing network is investigated theoretically. Dynamic behavior of the single electron in the system at finite temperature is analyzed using a master equation with a tunneling transition rate. The analytical model indicates that an input-output correlation has a peak as a function of temperature, which confirms the appearance of the stochastic resonance. The peak position and height depend on charging energy, tunnel resistance, and input signal frequency. It is also found that the correlation is enhanced by formation of a summing network integrating quantum dots in parallel. The present model quantitatively explains the stochastic resonance behaviors of the single electrons predicted by a circuit simulation (Oya, Asai, & Amemiya, 2007).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.