Abstract
Thermal management is critical to improving battery performance and suppressing thermal runaway. Besides developing external cooling technologies, it is important to understand and control thermal transport inside batteries. In this paper, heat transfer inside batteries is first analyzed and the thermal conductivity of each component is measured. The results show that low thermal conductivity of the separator is one major barrier for heat transfer in Li-ion batteries. To improve thermal conductivity of the separator, a hierarchical nano/micro-Al2O3/polymer separator is prepared with thermal conductivity of ~1Wm−1K−1, representing an enhancement of 5× compared to commercial polyethylene-based separators. Modeling has been performed to understand mechanism behind the enhancement of thermal conductivity, which suggests that addition of nanoparticles significantly reduces thickness of polymer coating on micron-sized Al2O3 particles and thus increase the thermal conductivity of the composite separator. This Al2O3-based separator also has similar ionic conductivity with commercial polymer separators. Such composite separator may have potential applications in developing batteries with better performance and safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.